391 research outputs found

    Regulation of Zn and Fe transporters by the GPC1 gene during early wheat monocarpic senescence

    Get PDF
    BACKGROUND: During wheat senescence, leaf components are degraded in a coordinated manner, releasing amino acids and micronutrients which are subsequently transported to the developing grain. We have previously shown that the simultaneous downregulation of Grain Protein Content (GPC) transcription factors, GPC1 and GPC2, greatly delays senescence and disrupts nutrient remobilization, and therefore provide a valuable entry point to identify genes involved in micronutrient transport to the wheat grain. RESULTS: We generated loss-of-function mutations for GPC1 and GPC2 in tetraploid wheat and showed in field trials that gpc1 mutants exhibit significant delays in senescence and reductions in grain Zn and Fe content, but that mutations in GPC2 had no significant effect on these traits. An RNA-seq study of these mutants at different time points showed a larger proportion of senescence-regulated genes among the GPC1 (64%) than among the GPC2 (37%) regulated genes. Combined, the two GPC genes regulate a subset (21.2%) of the senescence-regulated genes, 76.1% of which are upregulated at 12 days after anthesis, before the appearance of any visible signs of senescence. Taken together, these results demonstrate that GPC1 is a key regulator of nutrient remobilization which acts predominantly during the early stages of senescence. Genes upregulated at this stage include transporters from the ZIP and YSL gene families, which facilitate Zn and Fe export from the cytoplasm to the phloem, and genes involved in the biosynthesis of chelators that facilitate the phloem-based transport of these nutrients to the grains. CONCLUSIONS: This study provides an overview of the transport mechanisms activated in the wheat flag leaf during monocarpic senescence. It also identifies promising targets to improve nutrient remobilization to the wheat grain, which can help mitigate Zn and Fe deficiencies that afflict many regions of the developing world.Fil: Pearce, Stephen. University of California; Estados UnidosFil: Tabbita, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación de Recursos Naturales. Instituto de Recursos Biológicos; ArgentinaFil: Cantu, Dario. University of California; Estados UnidosFil: Buffalo, Vince. University of California; Estados UnidosFil: Avni, Raz. Tel Aviv University; IsraelFil: Vazquez Gross, Hans. University of California; Estados UnidosFil: Zhao, Rongrong. China Agricultural University; ChinaFil: Conley, Christopher J.. University of California; Estados UnidosFil: Distelfeld, Assaf. Faculty Of Life Sciences, Department Of Molecular Biolo;Fil: Dubcovsky, Jorge. University of California; Estados Unidos. Howard Hughes Medical Institute ; Estados Unidos. Gordon & Betty Moore Foundation Investigator; Estados Unido

    IQP Project: Digital Audio Workstation Educational Game

    Get PDF
    Interactive technologies exist to help non-musicians acquire musicianship skills using software-based instruments. These systems are accessible to non-musicians allowing them to create music with greater ease than traditional instruments. However, one component of modern composition, the use of DAWs, still requires prior musicianship knowledge in order to operate. One goal of this project was to lessen the learning curve of a DAW for non-musicians. This was accomplished through the development of an integrated tutorial game system based on a review of the literature on interactive music systems and DAWs. After developing the prototype, students were surveyed for the purpose of feedback on the viability of our tool to assist DAW-based composition with ease

    Prospectus, April 8, 1981

    Get PDF
    GETTING GOOD REPUTATION AS A SPORTS STATION, SAYS TURPIN: TURPIN WANTS WDWS \u27A COMPLETE STATION\u27; Week in Review: World, Nation; Letter to the Editor: \u27BSA wrong\u27 says student; Business program offers three courses; Classifieds; Lynn Siler sings and tours in Europe; Astronomy Club\u27s \u27Future Is Now\u27; PC annual Health Fair today!; Gunki presents financial aid; Central Illinois \u27bar band\u27 makes it big: Tickets available: REO at the Assembly Hall April 21; Clampett\u27s characters are still the best!; PC student art exhibit open April 27-May 7; WPCD Top 30; \u27Caligula\u27 repelling yet still \u27intriguing\u27; Senn turns temporary business into lifetime success; Francisco says, Strong music force ; Dogs are good frisbee partners; Gedge at Parkland April 9; Photo contest winner: And the winner is...John Funk; PC sponsors one day nurses course April; What is DES? Many people don\u27t know; Students becoming more involved; Students meet over issues; Dunson named All-State, narrows choices to Drake and TCU; Split with ninth-ranked Triton: Hitting, clutch pitching have Cobras winning; Softball team opens with romp; Fast Freddy Contest; FF baseball beginshttps://spark.parkland.edu/prospectus_1981/1021/thumbnail.jp

    Results from the Supernova Photometric Classification Challenge

    Get PDF
    We report results from the Supernova Photometric Classification Challenge (SNPCC), a publicly released mix of simulated supernovae (SNe), with types (Ia, Ibc, and II) selected in proportion to their expected rate. The simulation was realized in the griz filters of the Dark Energy Survey (DES) with realistic observing conditions (sky noise, point-spread function and atmospheric transparency) based on years of recorded conditions at the DES site. Simulations of non-Ia type SNe are based on spectroscopically confirmed light curves that include unpublished non-Ia samples donated from the Carnegie Supernova Project (CSP), the Supernova Legacy Survey (SNLS), and the Sloan Digital Sky Survey-II (SDSS-II). A spectroscopically confirmed subset was provided for training. We challenged scientists to run their classification algorithms and report a type and photo-z for each SN. Participants from 10 groups contributed 13 entries for the sample that included a host-galaxy photo-z for each SN, and 9 entries for the sample that had no redshift information. Several different classification strategies resulted in similar performance, and for all entries the performance was significantly better for the training subset than for the unconfirmed sample. For the spectroscopically unconfirmed subset, the entry with the highest average figure of merit for classifying SNe~Ia has an efficiency of 0.96 and an SN~Ia purity of 0.79. As a public resource for the future development of photometric SN classification and photo-z estimators, we have released updated simulations with improvements based on our experience from the SNPCC, added samples corresponding to the Large Synoptic Survey Telescope (LSST) and the SDSS, and provided the answer keys so that developers can evaluate their own analysis.Comment: accepted by PAS

    Airborne methane remote measurements reveal heavy-tail flux distribution in Four Corners region

    Get PDF
    Methane (CH_4) impacts climate as the second strongest anthropogenic greenhouse gas and air quality by influencing tropospheric ozone levels. Space-based observations have identified the Four Corners region in the Southwest United States as an area of large CH_4 enhancements. We conducted an airborne campaign in Four Corners during April 2015 with the next-generation Airborne Visible/Infrared Imaging Spectrometer (near-infrared) and Hyperspectral Thermal Emission Spectrometer (thermal infrared) imaging spectrometers to better understand the source of methane by measuring methane plumes at 1- to 3-m spatial resolution. Our analysis detected more than 250 individual methane plumes from fossil fuel harvesting, processing, and distributing infrastructures, spanning an emission range from the detection limit ∼2 kg/h to 5 kg/h through ∼5,000 kg/h. Observed sources include gas processing facilities, storage tanks, pipeline leaks, and well pads, as well as a coal mine venting shaft. Overall, plume enhancements and inferred fluxes follow a lognormal distribution, with the top 10% emitters contributing 49 to 66% to the inferred total point source flux of 0.23 Tg/y to 0.39 Tg/y. With the observed confirmation of a lognormal emission distribution, this airborne observing strategy and its ability to locate previously unknown point sources in real time provides an efficient and effective method to identify and mitigate major emissions contributors over a wide geographic area. With improved instrumentation, this capability scales to spaceborne applications [Thompson DR, et al. (2016) Geophys Res Lett 43(12):6571–6578]. Further illustration of this potential is demonstrated with two detected, confirmed, and repaired pipeline leaks during the campaign
    • …
    corecore